Evaporative Heat Transfer with R134a in a Vertical Minichannel

نویسنده

  • Zahid Anwar
چکیده

Smart cooling solutions are required for modern electronic devices as heat flux is continuously increasing while component size is shrinking day by day. Two phase heat transfer within compact channels can cope with high heat flux applications. Two phase heat transfer in narrow channels was the subject of many studies from last decade. The mechanisms involved, however, are not fully clear and there is still room for further investigations to come up with a general solution. This article reports experimental finding on flow boiling heat transfer of R134a in a resistively heated, smooth vertical stainless steel minichannel. Experiments were conducted at 27 & 32 o C saturation temperature with 100-500 kg/m 2 s mass flux and till completion of dryout. The effect of various parameters like, heat flux, mass flux, vapor quality and system pressure was studied. Results indicated that heat transfer was strongly controlled by applied heat flux while insignificant effect of varying mass flux and vapor quality was observed. Experimental findings were compared with various macro and micro scale correlations from literature, this comparison revealed Gungor and Winterton [10] correlation as the most accurate one for predicting local heat transfer coefficients.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Importance of Turbulence during Condensation in a Horizontal Circular Minichannel

Three-dimensional simulations of condensation of refrigerant R134a in a horizontal minichannel are presented. Mass fluxes ranging from 50 kg m -2 s -1 up to 1000 kg m -2 s -1 are considered in a circular minichannel of 1 mm diameter, and uniform wall and vapour-liquid interface temperatures are imposed as boundary conditions. The Volume of Fluid (VOF) method is used to track the vapour-liquid i...

متن کامل

Evaluation of Evaporative Cooling for Heat Transfer in the Condenser of Window-Air Conditioners

There is a demand for reduced power consumption in the vapor compression refrigeration cycle. Coefficient of performance of window-air conditioners considerably decreases and power consumption increases under very hot conditions. These problems have encouragecl studies aimed at improving the performance of window-air-conditioners by enhancing the heat transfer rate in the condenser. In this ar...

متن کامل

Evaluation of Evaporative Cooling for Heat Transfer in the Condenser of Window-Air Conditioners

There is a demand for reduced power consumption in the vapor compression refrigeration cycle. Coefficient of performance of window-air conditioners considerably decreases and power consumption increases under very hot conditions. These problems have encouragecl studies aimed at improving the performance of window-air-conditioners by enhancing the heat transfer rate in the condenser. In this ar...

متن کامل

Two Phase Heat Transfer Characteristics in a Vertical Small Diameter Tube at Sub Atmospheric Pressure

Two-phase heat transfer is experimentally examined through vertical small diameter tubes, D =1.45 and 2.8 mm using water under a pressure of 50 to 81 kPa and a natural circulation condition. The pool boiling correlation by Stephan-Abdelsalam and the thermosyphon boiling correlation by Imura, et al. predict the measured experimental data in the 2.8 mm tube with an error of -30%. A large heat tra...

متن کامل

Experimental Investigation of Mixed Convection Heat Transfer in Vertical Tubes by Nanofluid: Effects of Reynolds Number and Fluid Temperature

An experimental investigation was carried out to study mixed convection heat transfer from Al2O3-water nanofluid inside a vertical, W-shaped, copper-tube with uniform wall temperature. The tests covered different ranges of some involved parameters including Reynolds number, temperature and particles volume fraction. The results showed that the rate of heat transfer coefficient improved with Rey...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013